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THE CLASSICAL "SPHERE-OF- INFLUENCE" S

e
SUMMARY /)) 5

The classical definition of the "sphere-of-influence" is given and
the equation implicitly defining its radius is derived. This equation
was solved using a little known iteration technique attributed to
Wegstein, Two analytic approximations are derived and the Fourier coef-
ficients through 12th order for the exact result are displayed for the
moon and each planet in the solar system. Several "spheres" about the
moon computed according to these results are displayed graphically for
the earth-moon system.

I. INTRODUCTION

It has been an increasingly popular and useful tool in the prelimi-
nary design phases of interplanetary trajectories and even lunar probes
to approximate the actual motion of a rocket vehicle by segments of
trajectories found from the classical two-body equations. This means,
for example, that the motion of a Mars probe might be approximated to a
high degree of accuracy by three segments: an earth-centered conic
segment, a sun-centered conic segment and a Mars-centered conic segment.
The point at which the transition from one segment to the next occurs is
somewhat arbitrary, but it has been customary to use an approximation to
the "sphere-of-influence" as the criteria. This modern term, '"sphere-of-
influence," is a carry-over from the classical work of Laplace and
Tisserand who used the term "activity-sphere." The surface to which
both these terms refer is not truly spherical, but generically the terms
are descriptive. It is not the intent here to discuss the effect of the
"sphere-of-influence" on the accuracy of patched-conic techniques but
merely to make available a reference on a much seen but little discussed
term.,

II. DISCUSSION

Considering n point masses, the equations of motion for the kth body
are

n .,

. (?k -T.)
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where K is the gravitational proportionality constant, ' indicates that
the dummy variable j cannot equal k, and the origin of the coordinate
system is arbitrary except that it is not coincident with one of the
masses. If the origin is translated to one of the masses, say the ith
mass, the equations of motion can be written

=% oy P* =% =%
. r - T T,
?k*=-K(m.+mk)——k—-ZKm.<k i > (1)
1 P 3 ] |?* _ ?ﬂa |?ﬂ3
k j=1 k j j

where k # i, j # k, j # i and * indicates that the origin for the radius
vectors is coincident with the ith mass., WNotice for the classical two-
body problem, equation (1) reduces to the well-known result

% ?)*
f; = - K(m; + mp) —=—, (2)

24°

where m; is at the origin of the coordinate system. The right-hand side
(R.H.S.) of (2) is the force per unit mass acting on my and its magnitude
will be called the two-body force.

Now consider three bodies where the coordinate system in Figure 1
is referenced.
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Figure 1




With the aid of (1), dropping the * notation, the equation of motion
of m with respect to M becomes

= -K@m + M) ?S-Kml ?'?l3+ ?3.
|7 -7 7]

From Figure 1, it is seen that p =¥ - Ty and making the assumption that
m << M, the last equation becomes

. = - -
T+ Km —= =-1<ml<p + = > 3)
71° IB1° 17’

The R.H.S. of (3) may be considered a perturbing force_due to m; which
disturbs the motion of m about M. Calling this force F,;, its magnitude is

1/2
1 1 —)_—)

ﬁ‘?ll:*‘“‘?l'?l =K1‘11<Q1+;.'4+2‘237r1> s
1 1

where p = IB)l and ry = I?l . The ratio of the magnitude of the perturb-
ing force to the magnitude of the two-body force for this case is

m 1 2. T vz
= o2 -1 1 g - Tra
Ry =r M<?+¥+_F_IT> . (4)

Using (1) again, the equation of motion for m with respect to m; is

= =
.—3=-K(m+m1) ?S-KM i_(-:l)a-i-(-:l)a
I |5 - (P} |71
— -
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Assuming m << m; and noticing that T = E?+-f1, this becomes

7+ Kmy —L—-KM(?3~?1> (5)
|31° NP

Again, the R.H.S. of (5) may be considered a perturbing force due to M
which disturbs the motion of m about m;. Calling this force F;, its
magnitude is

i/ 2
- =R 1 1 XX - T
[Fo| = +VF2- F =m<?4+;z-—r—s—;é—l
1 1

where r = |7| and r; = |F1|. The ratio of the magnitude of the perturb-
ing force to the magnitude of the two-body force for this case is

1/2
_ M /1 1 2¥ - T1
Rz—pm:L ;;+;'zi: I3 r§> . (6)

The "sphere-~of-influence" is now defined as the locus of points
for which these two ratios are equal. Equating (4) and (6), evaluating
the scalar products and rearranging yields

1/2

4 4 2 2
P+ rq + 2 r7 cos
4 _ (ml/M)2 4 <;4+ e 1 92 1 0 §> , (7)

r; - 2rripcos 6 -2rr

where 6 is the angle between T, and P. This is the exact defining equa-
tion for p, the radius of the "sphere-of-influence." p is the only
unknown in (7) since r = (ri + p 4+ 2r, p cos 8)1/2, r, is supposed
known, and 6 is a parameter, For m; <M, equation (7) represents a sur-
face enclosing m; and p/r; < 1. Equation (7) must be solved for p
numerically using an iterative procedure. Wegstein's iteration, dis-
cussed in Appendix I is applicable and extremely rapid. However,
numerical experience with a normalized form of (7) indicated that its
denominator was not being evaluated accurately. The fundamental reason
for this is due to the R.H.S. of (5) which requires differencing two




nearly equal quantities; always an inaccurate process unless special
procedures are adopted. This computational problem is neatly circum-
vented by applying an idea of Encke's which he employed in computing
Planetary orbits. The specific details of the application are dis-
cussed in Appendix II with the following result

(L + R® + 2R cos 8) (1 + R* + 2R? cos 6)1/2

4 _ 2
R (ma/M) [F2(1 + R® + 2R cos 6) + 2F(R®Z + R cos 9) + RZ]/ 2
_ 2 (1 +Q1) (1 +R*+ 282 cos 9)/2
(/M) [FE(1 + Q) + 2F(Q, + R®) + R=]I/=> (82)
where R = p/r;, Q1 =R® + 2R cos 6 and F = F(Qi) is defined as
3 15 =2 n (2n + 1) n
F=FQD) =-5Q+50Q+...+ (nt&ELony

n! n! 2
(8b)
n=1,2, ..., if0=Qy <1

L]
[

3 2 1 1
= F(Q2) =‘2'<Q2+942-—22Q2+5;Q§ +

(2n - 5)! 1 n
n'(n - 3)! ,2n-4 Q, + ... (8¢)

+ 1"

n = 3,4,5, ..., if -1 <Q; <0,

where

- _ —Q
Qw=-71% Q °

The Wegstein iterative technique was able to solve equations (8) to

12 significant digits in at most 6 trials and in the majority instances
3 or 4 trials for the moon and planets. This precision is not justified
by the limited accuracy of the mass ratios involved, but assuming them



exact, the speed of convergence of the iteration scheme is as stated.
Because the complexity of equations (8) requires an electronic computer
or desk calculator for efficient evaluation, two simplified approxima-
tions were developed in Appendices III and IV. These are given as (9)
and (10) which explicitly define p.

o = =L (9
2
2/s 2,y1/10_ 2 1 + 6 cos=H
M/m4) (1 + 3 cos<p) 5 cos 6 <————'—2—1 + 3 cos20
1/10 1/10

2/s
<%%> cos 6 - é% cos 206 + ...]

SORORNEOL

2/5 2/s
.91244 (“‘—b-dl> r, [1 + .72995 <“—;41> cos 0 - .06 cos 20 + ]

(10)

They are essentially variations of Tisserand's development. The maximum
relative error incurred with (9) is less than 1.5 percent for the moon,
negligible for the planets out to Mars, and less than .2 percent (usually
much less) for the remainder. The maximum relative error using (10) is
less than 5 1/2 percent for the moon and less than 3 1/2 percent for the
planets. These two equations should be compared with the frequently

seen expression for p

p = (ml/M)z/5 ry. (11)

Equation (10) suggests a Fourier expansion for p. Since p is an even
function of 3§, the expansion is of the form

p(d) = ag +a; cos § +az cos 20 + ... ay cos no + ...,

n




where

7t T
1 =2
a == b/‘ p(d) d9 and a, == u/\ p(8) cos ng d3,

fs) o

form=1, 2, ... .

The coefficients through 12th order were computed for the moon and
planets and are displayed in Table I along with the largest relative
error incurred in truncating the series at that coefficient. Trapezoidal
integration was used for the calculation using the planetary data in
Table TI. A comparison of the actual coefficients with the first three
coefficients yielded by (10) is made in Table III.

For the earth-moon system, equations (8), (9), (10) and (11) were
used to plot typical "spheres-of-influence" about the moon. These results
are shown in Figure 2. Notice that these are cross-sectional shapes, and
the three-dimensional surface is obtained by a revolution about T, or, in
this case, the earth-moon line. The maximum radius occurs at about 80.8°
and is not on the earth-moon line as implied by Tisserand. Also shown
for comparison is the gravity sphere defined as the locus of points for
which the gravitational attraction of the moon equals the gravitational
attraction of the earth., 1Its equation is

rip cos § - = 0, (12)

e e

which is the equation of a circle with radius

R

and center displaced away from the moon's center by an amount



I1I, CONCLUSIONS

Considering three bodies, two massy and one a particle of negligible
mass, the "sphere-of-influence" has been defined as the locus of points
for which the ratio found by taking the perturbing force of one massy
body on the particle and dividing it by the two-body force between the
particle and the other massy body is set equal to a similar ratio with
the roles of the two massy bodies reversed. The resulting equation for
the "sphere-of-influence'" was conveniently and rapidly solved by using
Wegstein's iteration. Formulas for two analytic approximations and coef-
ficients for Fourier expansions through 12 terms have been displayed.
Which of these should be used depends on the accuracy required and the
computational aids available. Finally, graphical display of some of
these results indicates that, while the departure from sphericity of the
"sphere-of-influence" is relatively small, it is nonetheless significant.
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TABLE

IT

Solar System Parameters

Planet r4 (km)* (my/M)2/ 5 M/m,)2/ S M/m,*
Mercury 57.9 x 10° | .19313 x 1072 | 517.78 6.1 x 10°
Venus 108 x 10 | .57037 x 1072 | 175,32 4.07 x 10°
Earth 150 x 10°% | .61846 x 10™2 | 161.69 3.3244 x 10°
Mars 229 x 10% | ,25352 x 1072 | 394.44 3.09 x 10°
Jupiter 776 x 10° | ,61937 x 10°1 16.145 1.0474 x 10°
Saturn 143 x 107 | ,38226 x 1071 26.160 3.5 x 10°
Uranus 287 x 107 | .18064 x 10-% 55.358 2.28 x 104
Neptune 450 x 107 | .19230 x 107 52.002 1.95 x 10%
Pluto 589 x 107 | ,60585 x 102 | 165.05 3.5 x 10°
Moon™* | 384,402 x 103 | .17212 5.8099 81.357

10

*
These values taken from "Lunar Flight Handbook,' NAS8-5031,
Martin Co.,

1963,

*%k
These values refer to earth-moon system.




TABLE III

Comparison Between Analytic Fourier Coefficients from
Equation (10) and Their Numerically Determined Values

ORDER
1 2 3

SUN-MERCURY

Approximate 102036. 143,852 -6122.15

Exact 103235. 114,303 -6918, 37
SUN-VENUS

Approximate 562072, 2340.19 -33724.3

Exact 568684, 1861.44 -33111.0
SUN-EARTH

Approximate 846471, 3821.40 -50788.2

Exact 856430, 3040.03 -57394.3
SUN-MARS

Approximate 529734, 980.326 -31784.1

Exact 535962, 779.091 -35917.8
SUN-JUPITER

Approximate 43855400, 1982780. -2631320,

Exact 44420300, 1602230, -2976600,
SUN-SATURN

Approximate 49878700, 1391820. -2992720,

Exact 50486000, 1117080. -3383550.
SUN-URANUS

Approximate 47305800, 623787. -2838350.

Exact 47866200, 497853, -3207880.
SUN-NEPTUNE

Approximate 78959600, 1108380, -4737570.

Exact 79896000. 884894, -5354460.
SUN-PLUTO

Approximate 32560700. 144000. -1953640,

Exact 32943800, 114552, -2207750.
EARTH-MOON

Approximate 60371.7 7585.28 -3622.30

Exact 61649,2 6355.15 -4093.37

11



Radii in 103 km

Exact
-------- Eq (9) ry= 384,402 km
———Eq (40) M
—-—Eq ) 7“-1 = 84.357

FIG. 2. SPHERE OF INFLUENCE ABOUT MOON

12
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FIG. 3. THE CLASSICAL "METHOD OF ITERATION"
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FIG. 4. THE DEVELOPMENT OF WEGSTEIN ITERATION
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APPENDIX I

A classical method for finding the root of a nonlinear equation is
known as the method of iteration. If a root of F(x) = 0 is desired and
F(x) can be solved for x in some form x = @(x), then the algorithm is

Xy = #(x5.1)- (I-1)

A sufficient condition for convergence to a root is
8" (k- | <1 (1-2)

for each of the x; in some neighborhood of the root. The sequence defined
by (I-1) is demonstrated graphically in Figure 3. The desired root, «,

is obviously the intersection of the straight line and the curve @g(x).

In this particular example, the sequence (I-1) is oscillatory, nonconvergent,
principally because |¢'01)| > 1. Wegstein devised a modification of (I-1)
that can force convergence even when (I-2) is violated. The modification
consists of altering the successive values of xp. Denoting the altered
values by xj, then

X, = x5, +K (x5 - %,.1)> (I-3)

where now x, = QKin_l). An estimate for K can be derived by referring to
Figure 4. Ideally, K(x, - X,_1) = -BC, and since x, - x,_1 = AC,

Now
1 +K = ACA; BC 22
so that
K __ _BC AC _ _ BC
1 +K AC AB AB °

15



From Figure 4, BC = BD, and by the mean value theorem, there exists a

Xp-1 < £ < & such that

g(a) - g(in-l) BD

g8 = - -5
a - in-l AB
Therefore,
K _ _B8C BD _ .
1 +K  AB " AB ) (&)
or
2' (&)
= T e (I-4
1 - 4'(®) )
#' (&) can be estimated as
ﬁ(in-l) = g()-(n_z)
g'(e) = = .
Xn-1 -~ Xn-2
(1-5)
_ Xpn T ¥np-1
in-l - in-z
Substituting (I-5) into (I-4) into (I-3) yields
. (xq = %Xp-1) (g - %p-1)
Xp = X t 2 > (I-6)

Xp-1 - Xp-2 T Xpo3 - X

which is Wegstein's iteration formula.

As an example of the rapid convergence properties of (I-6), consider
the equation x> + 8x - 24 with roots 2, - 1 = j JfII. Equation (I-1)
becomes

x = H(x) = g&—§—§3 . (1-7)

16




Notice that @'(2) = -3/2. Actually, Figures 3 and 4 are plots of (I-7)
and show that (I-7) ummodified diverges as expected. The classical
iteration and the Wegstein procedure are compared in the following table:

n Xn Xn
1 1.00000000000 1.00000000000
2 2.87500000000 2.87500000000
3 .029541015625 .029541015625
4 1.74476338246 2.99999677755
5 1.93922535110 -.374989124219
6 2.00484760174 3.00659122337
7 1.99991096179 -.397294289403
8 1.99999987059 3.00783875302
9 2.00000000000 -.401524978457
10 3.00809184799
11 -.402383715948
12 3.00814387697
13 -.402560265342
14 3.00815460127
15 -.402596656742
16 3.00815681300
17 -.402604161995
18 3.00815726919
19 -.402605709998
20 3.00815736328
21 -.402606029282
22 3.00815738269
23 -.402606095173
24 3.00815738669
25 -.402606108735
26 3.00815738752
27 -.402606111558
28 3.00815738768
29 -.402606112111
30 3.00815738773
31 -.402606112257
32 3.00815738773
33 -.402606112257

17



APPENDIX II

The numerical problem mentioned in the text comes about as a result
of attempting to evaluate the magnitude of

r I
povc Sl g (11-1)
1
where r = |P| and r; = [fﬁ[. When ¥ and ¥ are approximately equal in

magnitude, the subtraction in (II-1) causes a loss of significant digits.
This means that, if a certain number of significant digits are desired in
the result, T and ?H must be known with a greater number of significant
digits (assuming T and T, are sufficiently close in magnitude). The
requirement for extra precision can be by-passed using a modification of
Encke's well known astronomical method. Substituting ¥ = ¥, + § into
(II-1) gives

or

i . - 3 3

| 1 1 _ 1 T T

| CROESE RS CRDLE-L S R
; 7 .

The R.H.S. of (II-2) can be evaluated accurately if (r1/r)2 - 1 can be
found accurately. There are essentially two cases to consider: (1)
r 2ryand (2) r <1r;.

Case 1: Define Q5 by

1 +Qy = (x/ry)5. (11-3)

19



Then

(r1/1)% = (1 +Qy)~%2

. 1
=1-§Q1+2?—-?—-2-Q?_+... +(-1)“-(M);Q:+...
1 1 2

n., n,

by the binomial expansion, valid for lQl| < 1., Consequently,

3 3-5 n (2n + 1) n
3 _ 17 =.2 —2 2 a2 _
/0 - 1= -3 Q + o525 Q3 + ...+ (P BRI gy
n. n, 2
(IT-4)
n=1, 2,
= FQa)-
Substituting (II-4) into (II-2) yields
1 N N 5
E F(Q.) 2 +(1 + FQQ1) ) op > (II-5)
where from (II-3)
r? - r2 T+ 0 - (T + - r2
Q, = (r/rl)z - 1= = 1 _ (ry :j E;& 6) 1
1 1
_ 26 - T1 + P 3’_ 0 4+ 2p Ty cos ©
= = = =
r r
1 1
= R® + 2R cos © (1I-6)

where

R = p/rl.

20




Case 2: Define Q; by
1 +Qz= (ri/r)=.
Then

(r/1)3 = (1 +Qx)%/2

-1 .3 3.1Q5_3 1 1. Q3
L+5Q+5 355 -"3"3"33.3%---

by the binomial expansion, valid for ]le < 1. Consequently,

(1‘1/1‘)3 -1

]

2 3 4 5
3 9§ Q2 Q2 Q2
2<Q2+2’3-2§+4 2T % .5t

n_(2n - 5)! 1 n
n'(n - 3)!

+ (-1)

FQQ2).

Substitution of (II-8) into (II-2) yields a form similar to (II-5)

ris F(Qz) Th1 + <1 + F(Q2)> 8}:
1

where from (II-7)

Qo= (eyr)2-1-T2pE EL= @ +D) - i+ D)

it

r
TL+0) - @T1+0
_ (28 * T1+ B - ) _ (DZ+ZDr1cose)
= = - T 2 2
+
?1'?1"'2—8‘?1"'6)'—3 r{ +p 2p ry cos @

(I1-7)

(11-9)

21




Qo = - RZ + 2R cos O
2 1 + R2 + 2R cos ©

S . N (11-10)

1 +Q;°

Referencing (II-5) and (II-9) in the form

the magnitude of the perturbing force of M disturbing the motion of m

—1—{F Th + (1 + F) B},

3
ry

about m; is

Fo

N =" +a+n 3 -5 r@+d + 7

r
1

|

1/2

Wz

FED @+ P+ @D T+ T

=
=]

- 1/2
LFZ(ri + 2p rq cos © + %) + 2F(p® +prq cos 0) + pz}

a2

=]

i/2
\-Fz(l + 2R cos 6 + R®) + 2F(R® + R cos 8) + R2:|

12

i/2

[Fz(l +Q1) + F(Qy + R®) + jol ,

E

=)

so that R- becomes

22

Ro

~ 1/2

- F2(1 + Q) + F(Q1 + R®) + RzJ )

_R2
my

—




Setting Ry = Ro gives

1/ 2 /s
my = (1 1 2—’9.? T . . /
M _;+17;+ oS 3 —m—lR F*(1 +Q;) + F(Q; + R®) + R

1
/2
/.-%,‘,\4_1_')”2 ? 1
(ml/M)(ri + 0® + 2p ry cos 0) kf* Wil S r3 cos 8) _
SE

1/ 2
M

n—lz RZ [Fz(l + Q1) + F(Q; + R®) + RZ] ,

or

(1 + R®Z + 2R cos 9)( + R* + 2R® cos 9)1/2
[F2(1 + Q1) + F(Q, + R®) + R2]1/2

R* = (my/M)Z

)2 (1 + Q) + R* + 2R® cos 0)1/2
[F2(1 + Q,) + 2F(Q; + R®) + 1{2]1/2 ’

= (my/M

which is equation (8a) of the text. To apply the Wegstein iteration,
this is rewritten as

R = o/ a + Q1)1/4(1 + R% + 2R® cos 0)/8
=~my ,
[F2(1 + Q;) + 2F(Q; + R®) + RZ]Y/B

The F(Q;) and F(Qy) series are both alternating series; thus, the trunca-
tion errors are less than the first term of the neglected remainder of
the series. Simple calculations show that 22 terms of the F(Q;) series
and 12 terms of the F(Qo) series are sufficient to yield an error less
than 10°8 if Q; and Q- are less than or equal to .4. Actually, for the
planets, the maximum Q, and Q are an order of magnitude smaller than
this; therefore retaining the quoted number of terms yields a precision
much greater than required. In using these series, Q; is always calcu-
lated, and F(Q,) is computed if Q; = 0 and F(Qz) is computed if Q; < 0.
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APPENDIX III

Equations (9) and (10) are derived by making use of the fact that
p/ry < 1. First, rewrite (7) as

OROE (@ ezl (@) e o)
MOERINORIORTE

2 1/2
p P
Substituting = = [1 + <—- + 2 — cos 9:\ and R = £ yields
ry Xy ry ry

2
<ﬁ> - ‘/1 + (1 +R% + 2R cos 8)2 - 2(1 + R cos 0)(1 + R® + 2R cos 0)*/2
M, (1 + R2 + 2R cos 68)2 1 + R* + 2RZ cos O

Expanding the radical and applying the binomial theorem several times gives

™
(‘l R* (1 - 4R cos 8 + ...) \&2(1+3c032 ) + 4R% cos 8 + ...

]

4R ¢ 6
R° (1L - 4R cos 6 + ...) \/(1 +3 cos® 9) {1+ 28 +>
1+ 3 cos2 g

f — 5 4R cos 6
R® (1 - 4R cos 6 + .. ) N1 + 3 cos® ~£+ + ...

1 + 3 cos? 9

i
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2R cos ©

R® (1 - 4R cos 6 + ...) 1 + 3 cos2 o <} +

2R cos §
R> Ji + 3 cos® B <} + - 4R cos
1+ 3 cos® @

+ 2R cos B ~ 4R cos 6 -

1+ 3 cos® 9

)

12R cos’ 8
+

R° V1 + 3 cos2 6 <}
1+ 3 cos® o

(1 + 6 cos?

R° JI‘+ 3 cos® 0 <} - 2R cos 9
1 + 3 cos®

0, ),
6

s 1 1 (L + 6 cos
RS = 5 l - 2R cos 6
J1 + 3 cos? o 1+ 3 cos

or

2
e) +lll>
29

6 cos® @)

2/5
1 / 1 a+
R = Y /10 1 - 2R cos ©
(1 + 3 cos® @) 1+

Therefore,

3 cosZ 9

+ 6 cos? @)

2/s
1 1 2 (1
R =1{—= 1 +=R cos 8
M l/lo 5 (1
(1 + 3 cos® 9)

which, solved for R, gives

+ 3 cos? 9)

2/s
m -
<g} (1 + 3 cos2 ) 2/*°
R =
2/s
. <m1> 1 <é> ( 0 (1 + 6 cos? o)
-\ T ) (cos
M (1 + 3 cos® G)l/lo ° (1 +3 cos® )
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so that

ry

o=

- 2/5 - a+6 2 g
M 2 a1/10 <g> cos
GE:> (1 + 3 cos= B) S (cos 0) 17 3 205 6 + ...

which yields equation (9) and differs from Tisserand's result only in
that he expands the denominator in the next to last equation.
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APPENDIX IV

Equation (10) is derived as follows. In equation (8), the denominator
through second order terms in R becomes RZ + 3R® cos?Z @. Neglecting terms
higher than first order elsewhere yields

2 5
1
R* = G}) (1 + 4R cos 0 + ...)
JEg(l + 3 cos® Q) + ...
or
2
5 my 2 -1/2
R” = 57 (1 +4R cos 8+ ...) (1 +3 cos©“ B8+ ...)
so that
‘o \5/5
R = <%%/ (1 + 4R cos 6 + ...)1/5 (1 + 3 cos® ¢ + ...)—1/10
2/s
=[1 4 5 -1/10
R = 5 (1 + H Rcos 6+ ...) (1 +3 cos= 8+ ...) .

Substituting cos® 6 = % (1 + cos 28) gives

. 2/5 -1/10
R = <;T> a + % Rcos 6+ ...) (}5/2) 1+ % cos 26) + ---> .

solving for R yields

2/s 1/10 1/10 2/5 -1
m A\
@G e O ]
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1/10 1/10 -1

T g O @) o]

) 1/10 - 2/5 1/10 o 2/s
= <§> <j} [1 + <%> <§> <ﬁ£ cos O - g% cos 26 + ...].

= 0.8, and ;é = .06 yields equation (10).

uﬂb

) 1/10
Substituting <§> = 0.91244,
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